TTK28 Modeling with neural networks

Teacher: Bjarne Grimstad

NOTE: THE COURSE WILL NOT BE GIVEN THIS FALL, 2024.

Course description

Deep neural networks are being widely deployed in the industry to solve complex tasks which conventional methods have struggled to solve. There are several reasons for this breakthrough: more data, more compute, and improved algorithms and software. A perhaps equally important factor to the success is the flexibility of neural networks as a modeling framework. Without explicitly programming the logic of an algorithm, neural networks can learn to solve complex tasks from data. In this paradigm, the job of the engineer has moved from programming logic, to designing meaningful machine learning tasks.

This specialization course gives an introduction to neural networks. We will see how neural networks, being computational graphs, can be used to build very generic hypothesis spaces of nonlinear models. With these models we can solve regression, classification or other types of learning tasks by simply selecting an appropriate cost function. The course ends with a couple of guest lectures on topics from ML research and/or an industrial applications of neural networks.

The goal with the course is to add neural networks to your problem solving toolkit. After completing the course, you should: understand the basic concepts of neural networks; be able to develop and apply a neural network; understand the advantages and limitations of neural networks; be able to digest new ML research and continue developing your skillset by self-study.

Lectures

The first lecture is scheduled to Monday 28th of August, 10:15-12:00 AM.

Most, if not all, of the lectures will be held digitally on Blackboard. Lectures will be live streamed to R3, Realfagbygget (https://i.ntnu.no/wiki/-/wiki/Norsk/R3+-+Undervisningsrom)

The lectures will be given in Norwegian, with slides written in English.

Assigments

Students will be given a voluntary project assignment or topic to study.

Exam

The exam will consist of two parts: 1) an oral presentation of the assignment, and 2) questions from the syllabus.

Exam dates: December 14-15.

Prerequisites

Syllabus